一、引言:什么是 JSON
JSON (Java Script Object Notation) 是一种很常用的数据格式,它常常用在 web 应用程序中。它可以表示结构化的数据。
下面是常见的 JSON 文件结构
{
    "name": "Kamishiro Rize",
    "age": "22",
    "occupation": "firefighter",
    "traits": [
        "Eagle Eyed",
        "Fast Healer",
        "High Thirst",
        "Hearty Appetite"
    ]
}
它看起来与 Python 的 字典非常类似,也是由 key - value 结对组成,其中key是字符串形式,value是字符串、数字、布尔值、数组、对象或null。key/value间均使用逗号进行区分。
在 Python 中,JSON 作为字符串存在
json_get="_blank">str = '{"name": "Kamishiro Rize", "age": "22", "profession": "firefighter", "traits": ["Eagle Eyed", "Fast Healer", "High Thirst", "Hearty Appetite"]}'
JSON 与 Python 的数据结构和对应关系如下:
| JSON | PYTHON | 
|---|---|
| object | dict | 
| array | list, tuple | 
| string | str, unicode | 
| number | int, long, float | 
| true / false | True / False | 
| null | None | 
要使用 JSON ,字符串或者包含 JSON 对象的文件,都可以使用 Python 的内置包 json 模块。
import json
二、示例:在 Python 中解析 JSON
JSON 模组的常用方法
load / loads: 把 JSON 转换为 Python
- loads()
 
# some json
somebody_info = '{"name": "Wenjie Ye", "age": 75, "nationality": "China"}'
# parse to dict
j = json.loads(somebody_info)
# show result
print(j["name"])
print(j["age"])
print(type(j))
结果
Wenjie Ye
75
<class 'dict'>
将 JSON 转换为 Python 后,其结果的类型为字典
- load()
 
# some json
somebody_info = '{"name": "Wenjie Ye", "age": 75, "nationality": "China"}'
# use json.load
# j = json.load(somebody_info)  # AttributeError: 'str' object has no attribute 'read'
from io import StringIO
io = StringIO(somebody_info)
j = json.load(io)
print(type(j))
print(j)
load()  是从json格式的文件中读取数据并转换为python的类型。适用于文件读取,所以我们按 loads() 的例子来操作是会出错的,可以使用 StringIO 转换一下。load() 的结果也是返回字典
<class 'dict'>
{'name': 'Wenjie Ye', 'age': 75, 'nationality': 'China'}
dump / dumps: 把 Python 转换为 JSON
- dumps()
 
python_dict = {
    'name': 'Wenjie Ye',
    'age': 75,
    'nationality': 'China',
}
# convert to JSON
j = json.dumps(python_dict)
# result
print(j)
print(type(j))
转换后的结果返回字符串
{"name": "Wenjie Ye", "age": 75, "nationality": "China"}
<class 'str'>
- dump()
 
有了 load() 的经验,你应该知道,不带 s 的 dump 方法是用来将python数据类型转换并保存到json格式的文件内的。
from io import StringIO
io = StringIO()
json.dump('{"name": "Wenjie Ye", "age": 75, "nationality": "China"}', io)
content = io.getvalue()
print(content)
结果
"{\"name\": \"Wenjie Ye\", \"age\": 75, \"nationality\": \"China\"}"
总结
- dumps / dump: 将 Python 转换 JSON,返回的 type 为 str
 - loads / load: 将 JSON 转换为 Python,返回的 type 为 Dict
 - 如果要根据字符串转化方法中使用带有 
s的,要从文件进行转化就不加s 
优雅的使用 json 模块
格式化 JSON 结果
不难发现,dumps 获得的 str 结果并不是很好看,如果数据量大,或者数据结构复杂,没有缩进和换行将使得 JSON 数据变得不容易阅读。
所以 dumps() 方法提供了一些令结果更易读的参数,这些参数在实际工作中也常常用到。
- 
indent参数:定义缩进数 
python_dict = {
    'name': 'Wenjie Ye',
    'age': 75,
    'nationality': 'China',
    'occupations': ['Astrophysicist', 'University Professor'],
}
res = json.dumps(python_dict, indent=4)
print(res)
转换的结果将按照 indent 缩进 4 格
{
    "name": "Wenjie Ye",
    "age": 75,
    "nationality": "China",
    "occupations": [
        "Astrophysicist",
        "University Professor"
    ]
}
- 
separators参数:更改默认分隔符 
我们先来看看官方对其的定义:
If specified,
separatorsshould be an(item_separator, key_separator)tuple. The default is(', ', ': ')if indent isNoneand(',', ': ')otherwise. To get the most compact JSON representation, you should specify(',', ':')to eliminate whitespace.
- 类型应该传入元组
 - 其默认值是 
(',', ': ') 
元组的第一个分隔符为 key-value 之间的分隔,默认是逗号;第二个分隔符为 key 与 value 之间的分隔,默认是冒号。
我们可以更改分隔符的样式:
res = json.dumps(python_dict, indent=4, separators=(". ", " = "))
print(res)
结果
{
    "name" = "Wenjie Ye". 
    "age" = 75. 
    "nationality" = "China". 
    "occupations" = [
        "Astrophysicist". 
        "University Professor"
    ]
}
- 
sort_keys参数: 对结果排序,布尔值 
res = json.dumps(python_dict, indent=4, sort_keys=True)
print(res)
结果
{
    "age": 75,
    "name": "Wenjie Ye",
    "nationality": "China",
    "occupations": [
        "Astrophysicist",
        "University Professor"
    ]
}
json 模块不支持转换 bytes 类型
需要注意的是对于 bytes,json 模块并不能顺利转换,要先将bytes转换为str格式。
b = b"bytes content"
# j = json.dumps(b)  # TypeError: Object of type bytes is not JSON serializable
j = json.dumps(b.decode())
print(j)  # "bytes content"
直接转换 bytes 的结果是 TypeError,会告知你 bytes 不可JSON序列化, 只有转换为 str 类型后才可以序列化。
json 文件读写
import json
python_dict = {"k1": "v1", "k2": 123, "k3": ["I'm", "NutCat"]}
# write
f_json = json.dump(python_dict, open("E:\\temp\\temp.json", "w"))
print(f_json)  # return None
# read
import os
os.chdir("E:\\temp\\")
# check temp.json exist
print(os.listdir())
# read json file
print(json.load(open("E:\\temp\\temp.json")))
结果
None
['temp.json']
{'k1': 'v1', 'k2': 123, 'k3': ["I'm", 'NutCat']}
当然,我还是推荐使用 with open 的方式来写入数据
with open("E:\\temp\\temp.json", "w") as f:
	json.dump(python_dict, f)
利用 pandas 读取 JSON
import pandas as pd
df = pd.read_json("E:\\temp\\temp.json")
print(df.head())
如果你想利用 DataFrame 的特性来处理数据,你还可以使用 Pandas 库来读取数据,它读取我们之前生成的 temp.json 的结果如下:
   k1   k2      k3
0  v1  123     I'm
1  v1  123  NutCat
毫无疑问,我们可以用上强大的 pandas 的特性来处理 json 数据了。
但是,实际工作中,json 文件的内容可不像我们 temp.json 文件一样简单到朴实无华,我们需要知道怎么处理嵌套的 JSON 数据
有如下的 JSON 数据,保存在 json_test.json 文件中,members 字段中保存有 object 类型的数据,这些嵌套的数据在读取到 DataFrame 后会被转换为字典。
{
    "system_id": 707077,
    "system_name": "account_system",
    "formed": 2022,
    "update_time": "2022-06-06",
    "members": [
        {
            "username": "Kamishiro Rize",
            "age": "22",
            "account": "12345678",
            "nationality": "Japan",
            "active": false
        },
        {
            "username": "Wenjie Ye",
            "age": "75",
            "account": "87654321",
            "nationality": "China",
            "active": true
        }
    ]
}
现在,我们按照以前的方法读取它
import os
import pandas as pd
df = pd.read_json("json_test.json")
print(df)
读取的结果如下
   system_id     system_name  formed update_time  \
0     707077  account_system    2022  2022-06-06   
1     707077  account_system    2022  2022-06-06   
                                             members  
0  {'username': 'Kamishiro Rize', 'age': '22', 'a...  
1  {'username': 'Wenjie Ye', 'age': '75', 'accoun...  
其中的 members 字段是保存了一整个字典的,那么应该如何把他拆分开呢?其实,这一步已经和 json 无关了,是依靠 pandas 来处理这些嵌套的数据了。
我们可以在 members 列上,使用 apply 方法
df["members"].apply(pd.Series)
返回了 DataFrame 结果
	username	age	account	nationality	active
0	Kamishiro Rize	22	12345678	Japan	False
1	Wenjie Ye	75	87654321	China	True
但是,使用 apply 方法后生成了一个新 DataFrame,那我们还得想个办法给拼回去原来的 DataFrame。
其实,pandas 库中还有一个函数 json_normalize()
import json
import pandas as pd
with open("json_test.json") as f:
    acct_info = json.load(f)
res = pd.json_normalize(
    acct_info,
    record_path=["members"],
    meta=["system_id", "system_name", "formed", "update_time"],
)
print(res)
它会将 members 拆分并拼接到 DataFrame 结果中
         username age   account nationality  active system_id     system_name  \
0  Kamishiro Rize  22  12345678       Japan   False    707077  account_system   
1       Wenjie Ye  75  87654321       China    True    707077  account_system   
  formed update_time  
0   2022  2022-06-06  
1   2022  2022-06-06  
- 
record_path: 需要拆分的列的名字 - 
meta: 其他要加入到结果的列名的list,其顺序就是输出的顺序 - 
meta_prefix: 这个参数可以给 meta 的字段名前加个前缀